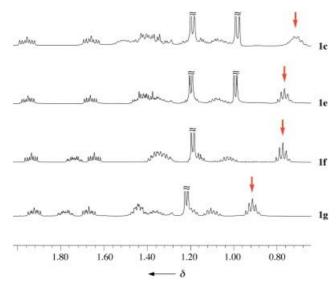
Zuschriften

Scheme 1. Structural formulae of the γ -peptides 1. In the expected conformation of 1 the red arrow points to a CH₂ group of the H₂N(CH₂)₄ unit, which is placed inside the shielding cone of the aromatic indole ring. Mes = mesitylenesulfonyl, Bn = benzyl, Nap = naphthyl.

Somatostatin Mimics

Design and Synthesis of γ -Dipeptide Derivatives with Submicromolar Affinities for Human Somatostatin Receptors

Dieter Seebach,* Laurent Schaeffer, Meinrad Brenner, and Daniel Hover


In a previous paper we have shown that simple N-acyl- γ -dipeptide amides that resemble a β II′ turn of an α -peptide can be designed to form a turn structure in solution (NMR) and in the solid state (X-ray). ^[1,2] To see whether such a turn could also be used to mimic a peptide, the biological activity of which rests upon a turn structure carrying functionalized side chains, we have now synthesized compounds 1a-g (Scheme 1), with the side chain of tryptophan in the γ^2 position of the first and of lysine in the γ^4 position of the second γ -amino acid, and have tested their affinities for the human somatostatin receptors hsst₁₋₅, ^[3-6]

The synthesis of γ -dipeptide derivatives **1** commenced with the *N*-Boc- γ -lactams **2** and **3** (Boc = *tert*-butoxycarbonyl), readily available from the corresponding commercial (*R*)-Ala and (*S*)-Lys acids by known procedures.^[1,7] Ring opening (with the Lys derivative after change of side-chain protection, \rightarrow **4**), and esterification with Me₃Si(CH₂)₂OH provided the (*R*)-Boc- γ ⁴-hhAla and Boc- γ ⁴-hhLys(Bn₂) esters, which were

(R)-Boc-γ⁴-hhAla and Boc-γ⁴-hhLys(Bn₂) esters,
[*] Prof. Dr. D. Seebach, Dr. L. Schaeffer, Dr. M. Brenner Laboratorium für Organische Chemie Eidgenössische Technische Hochschule ETH Hönggerberg, 8093 Zürich (Switzerland) Fax: (+41) 1-632-11-44 E-mail: seebach@org.chem.ethz.ch
Dr. D. Hoyer Novartis Pharma AG

Nervous System Research S-386-745, 4002 Basel (Switzerland)

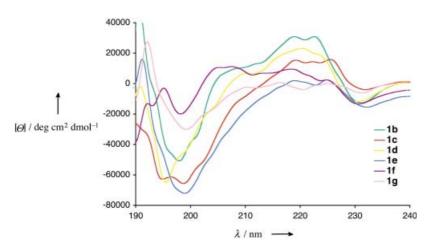
doubly deprotonated and alkylated with 1-mesitylenesulfonyl-3-bromomethylindole and MeI to give the *unlike* $\gamma^{2,4}$ -amino acid derivatives 5 and 7, respectively. The ester group in compound 5 with Trp side chain was cleaved (Bu₄NF, \rightarrow 6), and the lysine-derived esters were converted to the methylamides 8 and 9 without and with 2-methyl substitution, respectively (1. Bu₄NF, 2. MeNH₂, 3. F₃CCO₂H). Coupling of the two γ -amino acid derivatives (6 + 8 and 6 + 9), removal of the Boc groups, and acylation with 2-naphthylacetic acid^[8] (4-methylmorpholine, 1-hydroxy-1*H*-benzotriazole, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide) produced the sidechain-protected N-acyl-dipeptide amides 1a and 1b. Deprotection procedures (MeSO₃H, F₃CCO₂H, and Pd/C, H₂) led to the various partially or fully deprotected γ-dipeptide derivatives 1c-1g. All compounds were purified and fully characterized by elemental analyses, specific optical rotations, circular dichroism (CD), IR, and NMR spectroscopy, and mass spectrometry.

Figure 1. High-field part of the 500 MHz 1 H NMR spectra of the γ -dipeptides **1c**, **1e**, **1f**, and **1g** in CD₃OD. The red arrows point to high-field-shifted N(CH₂)₄ resonances.

A typical feature of the turn structure in somatostatin and its analogues is the juxtaposition of the tryptophan and lysine side chains, which places CH_2 groups of the $H_2N(CH_2)_4$ unit inside the shielding cone of the aromatic indole ring (NMR shifts between $\delta=0.8$ and 0.3 ppm are observed). [9] High-field sections of the NMR spectra of four γ -dipeptide amides,

shown in Figure 1, in which ${\rm CH_2}$ signals appear between $\delta = 0.9$ and 0.6 ppm, confirm the proximity between the corresponding side chains, and are thus compatible with a turn conformation of these compounds. The CD spectra of the N-naphthylacetyl dipeptide amides 1 exhibit an intensive negative Cotton effect near 200 nm ($[\Theta]$ up to 70000 deg cm² dmol⁻¹), with a

weaker and broader peak near 220 nm ($[\Theta]$ up to 30000 deg cm² dmol⁻¹) (Figure 2); this CD pattern may be taken as another piece of evidence for the presence of a secondary structure.


Probably the most stringent test of the γ -dipeptide structure is the affinity for somatostatin receptors. Binding affinities for the five cloned human receptors hsst₁₋₅, expressed in CCL-39 cell lines, were determined by displacement of [\$^{125}I]LTT-SRIF\$_8 from these receptor proteins.[\$^{10}While the fully protected γ -dipeptide **1d** binds to hsst\$_1\$ and hsst\$_3\$ with remarkable K_D values of 0.55 and 1.00 \$\mu\$M, respectively, the partially and the fully deprotected γ -dipeptide derivatives **1f** and **1g** bind to hsst\$_5\$ with K_D values of 0.51 and 0.87 \$\mu\$M, respectively (Table 1). Intriguingly, the highest affinities (**1d**/hsst\$_1\$, **1f**/hsst\$_5\$) are observed when the side chain functional groups (3-indolylmethyl and (CH\$_2\$_4NH\$_3\$_+\$) are protected by bulky aromatic moieties (N-mesitylenesulfonyl and/or -benzyl)!

The results presented here are confirmative, surprising, and promising; they demonstrate that a 14-amino-acid cyclic disulfide hormone, somatostatin, can be mimicked by a simple, designed, low-molecular-weight, open-chain γ -dipeptide derivative (cf. **1g**) that contains only three amide bonds; they suggest that hitherto unknown hydrophobic pockets are present in the receptors (hsst₁, hsst₃, and hsst₅), which supposedly house the turn-bound Trp and Lys side chains (cf. **1c**, **1d**, **1f**); and they promise a potential of γ -peptides for the development of peptidase-resistant^[11] peptidomimetic drugs.

Table 1: pK_D Values for γ -peptides 1b-1g at the five hsst receptors expressed in CCL-39 cells and measured by radioligand binding assays with [^{125}I]LTT-SRIF $_{28}$ as radioligand. $^{[a],[10]}$

Receptor	1 b	1 c	1 d	1 e	1 f	1 g	$Octreotide^{[b]}$	SRIF ₁₄ [c]
hsst ₁	5.47	6.06	6.26	5.61	5.98	4.73	6.45	9.08
hsst ₂	< 5	< 5	5.17	< 5	5.01	2.81	9.11	10.06
hsst ₃	5.53	5.89	6.00	5.73	5.67	5.42	8.60	9.67
hsst ₄	4.67	5.74	5.92	5.66	5.79	5.44	5.76	8.39
hsst ₅	4.49	5.01	5.87	5.14	6.29	6.06	7.31	9.01

 $\hbox{ [a] Submicromolar affinities are highlighted in red. [b] Sandostatin. [c] Somatostatin.}$

Figure 2. Nonnormalized CD spectra in MeOH (0.2 mm) of the γ -dipeptide derivatives 1 b–1 g.

Received: September 25, 2002 [Z50242]

^[1] M. Brenner, D. Seebach, *Helv. Chim. Acta* **2001**, *84*, 2155–2166.

^[2] For a non-peptidic analogue, see: R. W. Hoff-mann, Angew. Chem. 2000, 112, 2134–2150; Angew. Chem. Int. Ed. 2000, 39, 2054–2070.

^[3] For β-tetrapeptides mimicking somatostatin with nanomolar affinities for hsst₄, see: K. Gademann, M. Ernst, D. Hoyer, D. Seebach, Angew. Chem. 1999, 111, 1302–1304; Angew. Chem. Int. Ed. 1999, 38, 1223–1226; K. Gademann, M. Ernst, D. Seebach, D. Hoyer, Helv. Chim. Acta 2000, 83, 16–33; K. Gademann, T. Kimmerlin, D. Hoyer, D. Seebach, J. Med. Chem. 2001, 44, 2460–2468; D. Seebach, M. Rueping, P. I. Arvidsson, T. Kimmerlin, P.

Zuschriften

- Micuch, C. Noti, D. Langenegger, D. Hoyer, *Helv. Chim. Acta* **2001**, *84*, 3503–3510.
- [4] For a review on somatostatin receptors, see: D. Hoyer, H. Luebbert, C. Bruns, Naunyn-Schmiedeberg's Arch. Pharmacol. 1994, 350, 441 453; J. P. Hannon, C. Nunn, B. Stolz, C. Bruns, G. Weckbecker, I. Lewis, T. Troxler, K. Hurth, D. Hoyer, J. Mol. Neurosci. 2002, 18, 15–27. Classification and nomenclature of somatostatin receptors: D. Hoyer, G. I. Bell, M. Berelowitz, J. Epelbaum, W. Feniuk, P. P. Humphrey, A. M. O'Carroll, Y. C. Patel, A. Schonnbrunn, J. E. Taylor, T. Reisine, Trends Pharmacol. Sci. 1995, 16, 86–88.
- [5] For a review on somatostatin analogues, see: A. Janecka, M. Zubrzycka, T. Janecki, J. Pept. Res. 2001, 58, 91–107.
- [6] Methyl groups in the γ⁴ position of the first and in the γ² position of the second γ-amino acid do stabilize the turn (see ref. [1] for more details).
- [7] M. Smreina, P. Majer, E. Majerova, T. A. Guerassina, M. A. Eissanstat, *Tetrahedron* 1997, 53, 12867-12874; S. Hanessian, R. Schaum, *Tetrahedron Lett.* 1997, 38, 163-166; T. Hintermann, K. Gademann, B. Jaun, D. Seebach, *Helv. Chim. Acta* 1998, 81, 983-1002.
- [8] The choice of a 2-naphthylacetyl group at the N-terminus was inspired by previous observations: The naphthyl group may be considered to mimic the benzyl side chain of a Phe residue, which precedes the Trp in the peptide chain of somatostatin: S. J. Hocart, R. Jain, W. A. Murphy, J. E. Taylor, B. Morgan, D. H. Coy, J. Med. Chem. 1998, 41, 1146-1154; A. J. Souers, A. A. Virgilio, A. Rosenquist, W. Fenuik, J. A. Ellman, J. Am. Chem. Soc. 1999, 121, 1817-1825.
- [9] B. H. Arison, R. Hirschmann, D. F. Veber, *Bioorg. Chem.* **1978**, 7, 447–451; R. M. Freidinger, D. S. Perlow, W. C. Randall, R. Saperstein, B. H. Arison, D. F. Veber, *Int. J. Pept. Protein Res.* **1984**, 23, 142–150; C. Wynants, D. Tourwe, W. Kazmierski, V. J. Hruby, G. Van Binst, *Eur. J. Biochem.* **1989**, 185, 371.
- [10] J. P. Hannon, C. Petrucci, D. Fehlmann, C. Viollet, J. Epelbaum, D. Hoyer, Neuropharmacology 2002, 42, 396–413. CCL-39 stands for Chinese hamster lung fibroblast cells No. 39. [125]]LTT-SRIF₂₈ is a somatostatin dimer containing three mutations (Leu⁸, D-Trp²², 125I-Tyr), and SRIF is the acronym for somatostatin release inhibiting factor, 28 refers to the numbere of amino acids in the physiologically active form of the hormone.
- [11] J. Franckenpohl, P. I. Arvidsson, J. V. Schreiber, D. Seebach, ChemBioChem 2001, 2, 445-455.